Control of Meiotic Crossovers: From Double-Strand Break Formation to Designation.

نویسندگان

  • Stephen Gray
  • Paula E Cohen
چکیده

Meiosis, the mechanism of creating haploid gametes, is a complex cellular process observed across sexually reproducing organisms. Fundamental to meiosis is the process of homologous recombination, whereby DNA double-strand breaks are introduced into the genome and are subsequently repaired to generate either noncrossovers or crossovers. Although homologous recombination is essential for chromosome pairing during prophase I, the resulting crossovers are critical for maintaining homolog interactions and enabling accurate segregation at the first meiotic division. Thus, the placement, timing, and frequency of crossover formation must be exquisitely controlled. In this review, we discuss the proteins involved in crossover formation, the process of their formation and designation, and the rules governing crossovers, all within the context of the important landmarks of prophase I. We draw together crossover designation data across organisms, analyze their evolutionary divergence, and propose a universal model for crossover regulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drosophila PCH2 is required for a pachytene checkpoint that monitors double-strand-break-independent events leading to meiotic crossover formation.

During meiosis, programmed DNA double-strand breaks (DSBs) are repaired to create at least one crossover per chromosome arm. Crossovers mature into chiasmata, which hold and orient the homologous chromosomes on the meiotic spindle to ensure proper segregation at meiosis I. This process is usually monitored by one or more checkpoints that ensure that DSBs are repaired prior to the meiotic divisi...

متن کامل

Heteroduplex DNA in meiotic recombination in Drosophila mei-9 mutants.

Meiotic recombination gives rise to crossovers, which are required in most organisms for the faithful segregation of homologous chromosomes during meiotic cell division. Characterization of crossover-defective mutants has contributed much to our understanding of the molecular mechanism of crossover formation. We report here a molecular analysis of recombination in a Drosophila melanogaster cros...

متن کامل

Vilya, a component of the recombination nodule, is required for meiotic double-strand break formation in Drosophila.

Meiotic recombination begins with the induction of programmed double-strand breaks (DSBs). In most organisms only a fraction of DSBs become crossovers. Here we report a novel meiotic gene, vilya, which encodes a protein with homology to Zip3-like proteins shown to determine DSB fate in other organisms. Vilya is required for meiotic DSB formation, perhaps as a consequence of its interaction with...

متن کامل

Patterns of heteroduplex formation associated with the initiation of meiotic recombination in the yeast Saccharomyces cerevisiae.

The double-strand break repair (DSBR) model of recombination predicts that heteroduplexes will be formed in regions that flank the double-strand break (DSB) site and that the resulting intermediate is resolved to generate either crossovers or noncrossovers for flanking markers. Previous studies in Saccharomyces cerevisiae, however, failed to detect heteroduplexes on both sides of the DSB site. ...

متن کامل

Meiotic Recombination: Sealing the Partnership at the Junction

Crossovers ensure proper chromosome segregation in meiosis. A heterodimer of MutS proteins, hMSH4-hMSH5, has recently been found to interact with recombination intermediates in a manner that suggests a mechanism for directing meiotic DNA double strand break repair towards a crossover pathway.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annual review of genetics

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2016